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synopsis 
One difficulty in analyzing the state of filament in the dry spinning process is that in 

the boundary conditions required to solve the equations of mass, momentum and energy 
which are derived on the consideration of balance with respect to infinitesimally small 
element are not given a pn'ori. The equations which include these boundary conditions 
in themselves are derived by considering mas, momentum, and energy balances with 
respect to the entire cross section of filament. These additional macroscopic equations 
are simplified to a great extent by assuming the flat velocity profile through the cross 
section of filament. Besides, in the steady state, these macroscopic equations are modi- 
fied to give the equations of average solvent content, spinniig tension, cross-sectional 
area, and average temperature. When the spinning conditions are given and the 
physical constants are measured for a given polymer and solvent system, it becomes pos- 
sible to calculate the state of filament by solving these microscopic and macroscopic equa- 
tions simultaneously without resorting to actual spinning. 

INTRODUCTION 

Simultaneous partial differential equations on melt spinning were derived 
by Kase and Matsuo.'P2 Both transient and steady-state solutions of the 
equations were shown to explain systematically the behavior of filament in 
melt spinning. In this paper, as an extension of the above studies on melt 
spinning, the fundamental equations on dry spinning are derived, being 
based on macroscopic and microscopic balances of mass, momentum, and 
energy. 

An essential difference between melt and dry spinning is the number 
of components involved. In melt spinning we deal with one component, 
i.e., polymer, whereas in dry spinning we deal with two components, 
i.e., polymer and solvent. Dry spinning, therefore, involves the problem 
of mass transport in a binary system. The mass transport inside a filament 
may be treated as a molecular diffusion process, while that at  the boundary 
layer on the filament surface may be treated by the concept of interphase 
mass transfer of solvent vapor. 

The fundamental equations on dry spinning contain various constants 
which depend on the physical properties of polymer solution. These con- 
stants, therefore, vary both with temperature and concentration of polymer 
solution. Among the constants are the mass diffusivity, the activity of 
solvent, and the Trouton viscosity. 
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A difficulty in analyzing dry spinning mathematically is that a mere 
set of general spinning conditions and equations of continuity, motion and 
energy which are derived by considering balances over a infinitesimally 
small region of the system (hereafter, referred to as microscopic balances), 
does not completely specify the whole problem, since the boundary condi- 
tions to the above equations such as filament diameter or rates of mass, 
momentum and heat transfer across the filament surface are not yet given. 
In order to specify the above boundary conditions, another set of equations 
must be derived in addition to the equations of microscopic balances. 
These additional equations contain variables related to the above boundary 
conditions and are derived by considering balances over a region of filament 
which includes its entire cross section and surface (referred to as macro- 
scopic balances). 

Equations of microscopic and macroscopic balances, which constitute 
the fundamental equations, should be solved as a set of simultaneous 
partial differential equations. Solutions of these equations should simul- 
taneously give the conditions inside the filament such as temperature and 
the boundary conditions such as filament diameter. 

Because of excessive complexity it is difficult to solve the fundamental 
equations in their most general form. We must, therefore, reduce them into 
a simpler form by setting up appropriate assumptions or approximations 
and discard equations which are less important on the basis of physical 
considerations. 

First we derive the general nomteady-state equations assuming axial 
symmetry, then simplify the macroscopic equations by assuming a flat 
velocity distribution, and finally obtain under the steady-state condition 
the equations of solvent content, spinning tension, cross-sectional area, and 
temperature of filament. 

Once these steady-state equations are obtained and the physical con- 
stants are measured or estimated for a given polymer and solvent system, 
the state of a filament along its traveling direction during spinning process 
can be calculated and it may become possible to  predict properties of fila- 
ments dry spun under various spinning conditions without resorting to  ac- 
tual spinning. From the equation of solvent content, for instance, it 
becomes possible to calculate the distance from the spinneret required to  
complete the drying of solvent. This calculation is expected to give US 

useful knowledge concerning the selection of solvent, design of the length 
of a spinning column, and the determination of spinning conditions. Fur- 
thermore, it will become possible to  roughly predict the cross-sectional 
shape of a dry spun filament by solving the equation for the cross-sectional 
area by assuming that the perimeter of the cross section of a filament 
remains unchanged after the polymer solution gains a certain Viscosity 
level which does not allow further stretching of filament. It may also be 
possible to predict the orientation of polymer chains in a dry spun filament 
from the value of tensile stress by solving the equation of spinning tension. 
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Papers hitherto published on dry spinning discuss the effects of spinning 
conditions on filament properties only on the basis of experimental results. 
Theoretical analysis of the state of filament during dry spinning under 
various spinning conditions has not been done except by Sano and Nishi- 
k a ~ a . " ~  They calculated the residual solvent content and the tempera- 
ture of filament and showed that air temperature and polymer solution 
throughput had a dominant influence on the residual solvent content. 3*4 

Calculation of the deformation of filament, however, was not covered by 
the previous workers. The present theory, as mentioned above, will make 
it possible to predict the relation between spinning conditions and filament 
properties and to calculate the state of filament being dry spun. 

DERIVATION OF THE FUNDAMENTAL EQUATIONS 

We adopt the cylindrical coordinate system. The origin of the z axis 
is taken to be the position at some short distance from the spinneret where 
the velocity profile of the jet is considered to become practically flat. The 
z axis is positive in the traveling direction of the filament. The origin of 
the r axis is taken to be the center of the filament. In the following dis- 
cussions we will limit our consideration to the state of one filament. A 
macroscopic balance will be made over the segment of the filament which 
is bounded by two z and (z  + Az) planes perpendicular to the z axis and 
separated by a small distance Az (see Fig. 1). Assumptions necessary to 
derive the equations will be made where they are required. 

Spinner nning C o n d i t i o n s  

A i r  f low: 
(T-a ~q...Up,-or U,) 

D r y  spun 
f i l a m e n t :  

Fig. 1. Dry-spinning system. 



260 OHZAWA, HAGANO, AND MATSUO 

Equations of Continuity 

Equation of Continuity for the Polymer Component 
First we make the following assumptions. 
Assumption 1. The cross section of a filament is circular. Since the 

cross section of a filament produced by means of the dry spinning process 
often shows the shape of a dumbbell or raisin,6Ts it might be necessary to 
make some corrections to accurately analyze the later stages of drying 
process. At an earlier stage, however, the assumption is considered 
valid. 

Assumption 2. The flow velocities U P  and vs of the polymer component 
and the solvent component, respectively, are both axially symmetrical. 

Assumption 3. The concentration distribution within a filament is 
axially symmetrical. 

We take the mass fractions UP (z,r,t) and US (z,r,t) as the concentrations 
of the polymer component and of the solvent component, respectively. 
Note the relation 

Up + 0 s  = 1 (1) 
Assumption 4. The temperature distribution T(z,r,t) within a filament 

The density p(z,r,t) of the filament, therefore, is axially symmetrical. 
Now we consider the flow of a binary mixture of polymer and solvent 

The total mass flow rate of the polymer com- 

is axially symmetrical. 

across an arbitrary z-plane. 
ponent, Wp(z,t), across the z plane at time t will be 

PR 

where R(z,t) denotes the radius of filament and vp,,(z,r,t) denotes the z 
component of the flow velocity of the polymer component. 

Similarly, the total mass flow rate of the solvent component, Ws(z,t), 
is represented by the equation: 

where vg,,(z,r,t) denotes the z component of the flow velocity of the solvent 
component. 

Addition of eqs. (2) and (3) yields the total mass flow rate W(z,t) of the 
binary mixture: 

W(z,t)  = WP(2,t) + Ws(z,t) 

= iR 27rrP(UPllp,z + wsvs,,)dr 
PR 

where v,(z,r,t) denotes the z component of the mass average velocity o(z,r,t) 
of the mixture. 
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Mass flow Mass f l o w  
o f  o f  

polymer solvent 

z 

zt 

laporat ion 
o f  

solvent 

Fig. 2. Schematic description for macroscopic maw balance. 

We now consider a macroscopic mass balance of the polymer component 
over a filament segment bounded by the z and (z + Az) planes as shown in 
Figure 2. 

The total mass of the polymer component in this segment is 

( IR 2rrpwpdr) . Az 

Hence, the rate of mass accumulation of the polymer component in this 
segment is 

Thus, the contributions to the mass balance over this segment are as 
follows: 

Time rate of total mass accumulation of the polymer component in the 
segment : 

Total input of the polymer component across the z plane: 

WP(Z,t) 

Total output of the polymer component across the (z + Az) plane: 

WP(Z + 
The mass balance then becomes 

By dividing the entire equation by 

WP(Z)t) - WP(Z + h , t )  (5) 

Az and taking the limit aa Az ap- 
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proaches zero, we get the macroscopic equation of continuity for the poly- 
mer component : 

Equation of Continuity for the Solvent Component 

The evaporation of the solvent must be complete before a filament is 
taken up on a winding machine. The movement of the solvent during the 
drying process in the spinning column consists of two processes: the 
diffusion from the interior of the filament to its surface and the transfer 
in the gas phase from the filament surface into the flowing air. The con- 
centration distribution of the solvent a t  an arbitrary z plane will be sche- 
matically as in Figure 3. 

The symbol X S , O  is 
used to  denote the mole fraction of solvent vapor at the interface and 
xs,, to  denote the mole fraction contained in the flowing air. The trans- 
fer rate of the solvent at  the interface is represented by the molar flux 
Ns.0. 

Since the evaporation of the polymer component and the dissolution 
of air into the polymer solution can be neglected. N s  ,O is given by the equa- 
tion 

First we consider the movement in the gas phase. 

where k,, defined by the equation, represents the mass transfer coeffi- 
~ i e n t . ~  

We now apply the law of conservation of mass of the solvent component 
to the filament segment described in Figure 2. Noting that solvent 
evaporation is an additional contribution to the solvent mass balance un- 
like in the case of the polymer component, we have the following list. 

Distance f rom t h e  center  o f  f i lament 

Fig. 3. Concentration distribution of solvent in the filament and in the gas phase. 
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Time rate of total mass accumulation of the solvent component in the 
segment: 

Total input of the solvent component across the z plane: 

WS (z,t) 

W(Z + A . 4  

Total output of the solvent component across the (z  + Az) plane: 

Rate of evaporation of solvent across the filament surface: 

MsNs,o- 2rRAZ 

where M s  denotes molecular weight of solvent. 
When the entire mass balance is written down and divided by Az, we 

obtain the following macroscopic equation of continuity for the solvent 
component after letting AZ approach to zero: 

Addition of eqs. (6) and (8) yields the macroscopic equation of con- 
tinuity for the mixture: 

(lR 2rrpdr) + + ~ T R M ~ N ~ . ~  = 0 
bt  

(9) 

In order to  know the velocity and concentration distributions within 
a filament we must make use of the equations of continuity for a binary 
mixture which are derived by considering the local mass balance with 
respect to each component.' 

The general form for the mixture is 

( a d a t )  + (V. PV) = 0 (10) 

The general form for the solvent is equivalent to the binary diffusion 
equation: 

[b (ws ) /b t I  + (V * pWs4 = (V . PDPSVW) (11) 

where Dp ,S represents the binary diffusivity for the polymer-solvent 
system. 

Since eqs. (10) and (11) are too complicated for solution, we simplify 
them by making assumptions (5), (6) ,  and (7). 

Assumption 5. Density p of the mixture is constant irrespective of 
pressure, composition, and temperature. 

This means the assumption of incompressibility of the mixture. 
Assumption 6. The diffusion in the z direction is negligible in com- 

parison to that in the r direction. 
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Assumption 7. The movement of solvent due to average bulk flow v, 
in the r direction is negligible in comparison to that due to the average 
bulk flow v, in the z direction. 

Assumptions (2)  through (7)  simplify eqs. (10) and ( 1 1 )  to eqs. (12) 
and (13), respectively: 

1 b  d V 2  

r br bz 
- - (w,) + - = 0 - 

Equation of Motion 

Over a segment of filament bounded by the z and (z + Az) planes as 
shown in Figure 4, we write a momentum balance in the z direction in the 
form:  turn } = {momentum } + {acting on 1 (14) 

accumulation into the segment the system 

The rate at  which total momentum enters the z plane by convection 

net %ow of Sum of forces 

is 

lR 2?rrpvavadr 

The net convective momentum flow into this segment becomes, when 
Az is small enough, 

lR 2wpZ2drl z = a  - JR 2?rrpvazdri a = a + A z  

The .total upward force F(z,t) acting on the upper part end of the filament 
segment is 

F = lR 2srrZzdr 

The resultant force acting on this segment due to mechanical stresses 
in the z direction will be 

- JR 27rrrzzdrl 2 - 2  + lR 2rrrZ,dr/ 
z = a+Aa 
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Tensile Convective 
stress  momentum 

flow 

f o r c  

7 .lZ lz+.z 
Fig. 4. Schematic description for macroscopic momentum balance. 

For the notation, the positive direction, and the system for the subscripts 
of the stresses we adopt the same convention used in the textbook by 
Bennett and Myers." 

Other forces acting on the segment will be those arising from the gravi- 
tational force and the skin friction. 

Hence the various contributions to the momentum balanced in the z-direc- 
tion over the segment are as follows: 

Time rate of momentum accumulation in the segment: 

Net convective momentum flow into the segment: 

Resultant tensile force acting on the segment: 

Gravitational force acting on the segment: 

[ LR 2rrpydrI .  

Skin friction acting on the surface of the segment: 

- rf'2rRAZ 

In the above list rf denotes the local shearing stress or skin friction on 
the filament surface and g is the gravitational acceleration. We now sub- 
stitute these expressions into eq. (14). 
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By dividing the entire resulting equation by Az and taking the limit 
as Az approaches zero, we obtain the macroscopic equation of motion: 

+ s,” 2rrpgdr - 27rRrr (18) 

Velocity and stress distributions within the filament are governed by 
eqs. (19) and (20) derived on consideration of the local momentum balance 
under the assumptions (2), (3), and ( 4 ) .  

z component: 

r component: 

(20) bur bur) - :; b T r r  Trr - 788 

P ( $ + v r - + + z -  br bZ - -+=+ r 

In  order t o  solve eqs. (19) and (20) for velocities, we must express the 
various stresses on the right-hand side in terms of velocity gradients and 
fluid properties. Under assumption (8) below and assumption (5), eqs. 
(21)-(25) give the expressions for various stresses. 

Assumption 8. The rheological properties of the fluid obey the law of 
the Newtonian fluid. 

7 2 2  = --p + 2lc(bvz/bz) 

Trr = --p + 2p(bvr/br) 

Tee = - p  + 2p(vr/r) 

Tzr = p(bvz/br + bvr/bz) 

(21) 

(22) 

(23) 

(24) 

= 720  = 0 (25) 

where p is the viscosity of the fluid and is a function of temperature and 
composition of the fluid. 

Equation of Energy 

We write the statement of the law of conservation of energy over the 
same filament segment as in mass and momentum balances (see Fig. 5 ) .  
First make the following assumptions. 

Assumption 9. 
Assumption 10. Energy in and out by conduction in the z direction is 

negligible. 
Assumption 11. The contributions of kinetic energy and work done by 

such forces as pressure, gravitational, viscous, and external forces are 
negligible. 

Energy transport by radiation is negligible. 
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Convective 
energy f l o w  

Fig. 5. Schematic description for macroscopic energy balance. 

Unlike in melt spinning, we must take account of the additional contri- 
bution to the energy balance resulting from the difference in enthalpy of 
the solvent in the solution state and in the gas mixture. 

The rate at which the energy enters the z plane with the flow of the mix- 
ture will be 

P R  

where Cp is the specific heat of the filament at  constant pressure and Td is 
a datum temperature. 

The net convective energy flow into this segment becomes, when & is 
small enough: 

- {g [IR 2m-pCpvz(T - Td)dr .& I> 
Hence, the various contributions to the macroscopic energy balance 

Time rate of energy accumulation in the segment: 
over the segment will be as follows. 

{$ [ IR 27rrpCp(T - Td)dr -A2 I> 
Net convective energy flow into the segment: 

- {$ [lR 2 ~ r p C ~ v ~ ( T  - Td)dr I> .& 

Energy loss due to evaporation of the solvent across the filament sur- 
face: 

HsNs n o .  2 r R h  
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Energy gained from air flow by heat transfer across the filament sur- 
face 

In  the above list H S  denotes the partial molal enthalpy of the solvent 
at the filament surface in the gas mixture with respect to Td, h denotes the 
overall heat-transfer coefficient, T ,  denotes the temperature of the air 
flow, and T O  denotes the temperature of filament surface. 

When the entire energy balance is written down and divided by &, we 
obtain the following macroscopic equation of energy after letting & a p  
proach to zero 

] = - 
[l' 2arpCpv,(T - T&r 1 [IR 2arpCp(T - Td)dT 

at 

- 2aRHsNs,o + 2aRh(T, - To) (26) 
The temperature distribution within the filament will be obtained by 

solving the microscopic equation of heat conduction. The equation is 
given by eq. (27) under the assumptions (12), (13), and (14) below and 
those previously made. 

Assumption 12. The specific heat C p  of filament is constant irre- 
spective of temperature and composition. 

Assumption 13. The thermal conductivity X of filament is constant 
irrespective of temperature and composition. 

Assumption 14. The energy movement due to the flow v, in the r 
direction is negligible in comparison to that in the z direction. 

FUNDAMENTAL EQUATIONS UNDER FLAT 
VELOCITY ASSUMPTION 

Although simplified in the previous section by assuming axial symmetry 
and other limiting conditions, the fundamental equations of dry spinning 
are still too complicated for solution. In  this section it is shown that the 
macroscopic equations become quite simple under the two important 
assumptions (15) and (16) set forth below. 

Assumption 15. The z component Q,, of the velocity of the polymer 
component is equal to the z component us,, of the velocity of the solvent 
component. Hence both and us,* are equal to the z-component V,  of 
the mass average velocity. 

Assumption 16. The velocity v, is constant over the filament cross- 
section (the assumption of the flat velocity). 

Since in dry spinning the solvent concentration varies greatly in the 
radial direction, the viscosity near the surface is expected to be considerably 
higher than that at  the center. Therefore, validity of assumption (16) 
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may be questioned. 
this assumption before discussing its validity. 

However, we first try to solve the equations under 

Equations of Continuity 

Equations (2) ,  (3), and (4) for the total mass flow rates WP, WB,  and W 
of the polymer component, the solvent component, and the mixture, re- 
spectively, reduce to eqs. (28),  (29),  and (30) under the flat velocity as- 
sumption. 

W P  = A pvZ(wp> (28) 

where (wp(z)) and (ws(z ) )  denote the average mass fractions at z of the poly- 
mer component and of the solvent component, respectively, and A ( z )  
denotes the cross-sectional area of filament at z. These quantities are 
given by eqs. (31)-(33). 

= - 2rrwsdr 
A o  SR 

A = 2rR2  (33) 

The macroscopic equations of continuity for the polymer component, the 
solvent component, and the mixture are rewritten in terms of WP, W S ,  and 
W ,  respectively, as eqs. (34)-(36), 

Macroscopic equation of continuity for the polymer component: 

b WP bWP 
s i ( y , ) + d Z = o  

Macroscopic equation of continuity for the solvent component : 

Macroscopic equation of continuity for the mixture: 

(z) 4- + ~ ~ R M s N s , ~  = 0 

(34) 

Equation of Motion 
Noting eq. (30), we can rewrite the macroscopic equation of motion 

(18) in the form 
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where F denotes the spinning tension which arises from the normal stress 
in the z direction and is expressed by the equation 

F = IR 2~rr,,dr 

= A(T2,) (38b) 

Now we try to express F through the rheological equation. The iso- 
tropic component p of the stresses is defined as 

p = - ( ~ r r  + Tee + T z z ) / ~  

The stresses arising from the surface tension will be expressed ;ts 

7 7 7  = 708 = - y / R  

where y is the surface t e n s i ~ n . ~  
Thus we get from eqs. (39) and (40) 

P = -(7zz/3) + (2~/3R) 

Combination of eq. (41) with eq. (21) yields 

~ z z  = 3P(bvz/bz) - ( r / R )  

= P(bvz/az) - ( y / R )  

In  eq. (42b) above we used the relation that the Trouton viscosity P is 
three times the shear viscosity p in the Newtonian fluid.'O 

Inserting eq. (42b) into eq. (38a) and noting that bv,/b, is independent 
of r, we obtain 

F = A(p)(bv,/dz) - ydZ (43) 

where (6) is given by 

l R  (0) = - 2~rPdr 
A o  

Equation of Energy 

The macroscopic eq. (26) of energy will be simplified into the form 

+ 2 ~ R H a s . o  - 2nRh(T, - To) = 0 (45) 

where the average temperature (T(z,t)) is given by 

(T )  = $ SR 2 ~ r T d r  
0 

(46) 
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After the execution of differentiation, eq. (45) is rearranged to eq. 
(47) : 

C ~ ( ~ ) + v z z -  - 2aRh(T, - To) = ~ T R H S N S , ~  - 

Substitution of the macroscopic eq. (36) of continuity for the mixture 
into the third term of the right-hand side of eq. (47) yields 

= 2aRh(T, - To) - 2~RNs,o[Hs - MsCp((T) - Td)]  (48) 

Now we make assumption (17). 
The difference between the enthalpy of the solvent 

in the solution phase and that in the gas mixture is approximated by the 
heat of vaporization Ls of the pure solvent a t  its boiling temperature. 
Then eq. (48) is rewritten with the use of LS as: 

Assumption 17. 

FUNDAMENTAL EQUATIONS IN THE STEADY STATE 

One of the objects of this series of paper is to see how the changes of 
residual solvent content, cross-sectional area, and filament temperature 
along the z direction are affected by various spinning conditions. This 
object is satisfied by solving the steady-state equations, in which partial 
differentiation with respect to t is taken to be zero and that with respect to 
z is replaced by ordinary diffrentiation. In  this section we give the steady- 
state equations of solvent content, spinning tension, cross-sectional area, 
and temperature of filament. 

Equation of Solvent Content 

In  the steady state, the macroscopic eq. (34) of continuity of the polymer 
component becomes 

After integration we get 

w p  = c 
Equation (51) shows that the total mass of polymer which passes across 

any z plane per unit time is constant. In  other words, the polymer com- 
ponent which comes out of the spinneret is all wound by the wind-up roll. 
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Therefore, by rewriting the constant of integration C, we get the steady- 
state macroscopic equation of continuity for the polymer component: 

WP = A (.+Jz(Z> P(uP(4) (524 

= ANVNPWP,N (52b) 

= Awvwp (52c) 

where the subscripts N and W designate the positions at z = 0 and the 
wind-up roll, respectively. 

We define at  this stage the position zw of the wind-up roll by the distance 
from the nozzle where the evaporation of solvent entirely completes, i.e., 
where the relation ( u p )  = 1 holds. 

From eq. (35) of continuity of the solvent component, we get 

dWs/dz = 2~TMsNs.o = 0 (53 1 
On integrating eq. (53) from z = 0 to z = z, we obtain 

WS(Z)  - Ws(0) + 2?rRMsNs,odz = 0 (54) 
0 

Since the total mass flow rate WS of the solvent component is equal to zero 
at zw by the above definition, the replacement of the upper limit z of the 
integration by zw yields 

Ws(0) = lw 2nRMsNs.odz (554 

= ANVNWS,N (55b) 

Equation (55) shows that the total mass of the solvent component which 
comes out of the nozzle per unit time is equal to the rate of evaporation 
from the entire filament surface from z = 0 to z = ZW. 

Thus, the steady-state macroscopic equation for the solvent component 
becomes 

WS(Z)  = A (z>v.+(z) P(~s(z))  (564 

The sum of eqs. (52) and (56) yields the equation of continuity for W :  

W ( 4  = A(z)vz(z)P (57%) 

= ANVNP - iz 2~RMsNs.odz 
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Now we substitute eq. (48-1) into eq. (46) and carry out the differenti- 
ation to  get 

(58) 
- .d(" '>+-.-+ 1 1 d A  - . - =  1 dv, 0 
(up) dz A dz V ,  dz 

Similarly, the substitution of eq. (56a) into eq. (49) yields 

(59) 
1 d A  1 dv, 2~RMsNs.o 

- 0  
- . w + - . - + - . - +  1 
(us) dz A dz V ,  dz ws 

On subtracting eq. (59) from eq. (58) and taking eq. (1) into consideration, 
we obtain the ordinary differential equation of the first order for the average 
mass fraction of solvent, (ug(z) ) :  

In order to evaluate Ns,o we make the following assumption: 
Assumption 18. Immediately after the polymer solution comes out of 

the spinneret, there exists at  the surface of filament an equilibrium re- 
tionship (61) between the solvent concentration us in the liquid phase and 
the solvent concentration xs in the gas phase. 

2s = f b s )  (61) 

The explicit form of eq. (61) is dependent on a given polymer and solvent 
system and is governed by the activity of solvent. Theoretically, it is 
given by the Flory-Huggins equation.l1,l2 

If we take eq. (61) as given, we finally obtain from eqs. (6), (60), and 
(61) an ordinary nonlinear differential equation of the first order for the 
average mass fraction of solvent, (us(z) ) :  

When the molecular weight of solvent M s ,  the spinning conditions Wp, 
XS,,, WS,N, the mass-transfer coefficient k,(z), the cross-sectional area 
[A(z)]and the mass fraction of solvent at  the filament surface us,&) are 
given, eq. (62) can be solved to get the average mass fraction of solvent, 

The concentration distribution within the filament is given by solving 
under the boundary conditions (64) and (65) the diffusion eq. (63) which 
is derived from eq. (13) under the steady-state condition: in other 
words, if a spinning condition [ug,~],  the surface concentration [WS.~(Z)] 
the velocity [vz(z)] and the diffusivity Dps(z,r) are known, eq. (63) can 
be solved. 

(us (2) >. 
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with boundary conditions: 

z = 0 0 5 r 5 RN us = WS,N (64) 

(65) i’ z > 0, T = R(z)  U S  = W S , O ( Z )  

Thus, in order to solve both eqs. (62) and (63), the surface concentration 
wS,o(z) should be known. A suggested method of solving both equations 
simultaneously is to determine us,O(z) point by point so that the average 
weight fraction of solvent, (ws(z ) ) ,  obtained from eq. (62) and from eq. (32) 
by using the solution of eq. (63) are equal to each other. 

Equations of Spinning Tension and Cross-Sectional Area 

The steady-state macroscopic equation of motion is obtained from eq. 
(37) : 

dF d 
dz dz 
_ - _  - (vZW) - Apg + 2 ~ R r r  

Integration of eq. (66) from z = z to z = zw yields the equation of spin- 
ning tension F(z)  : 

F = FW - p(Awvw2 - AvZ2) + p g  lw Adz 

- [Fd(zw) - Fd(Z)] (67) 

where Fd(z) represents the total drag force acting at the entire surface of 
the filament from z = 0 to z = z and is given by the equation 

The physical meaning of each term on the right-hand side of eq. (67) is 
as follows. The first term FW represents the force acting between a filament 
and a wind-up roll a t  z = zw and is a constant determined by the spinning 
state. The second term represents the force required to accelerate a fila- 
ment. The third term is due to the weight of filament hanging from 
z = z to z = ZW.  The fourth term arises from the drag force acting at the 
surface of filament running through the surrounding air. Note that the 
first and the third terms increase the spinning tension, while the second 
and the fourth terms decrease it. 

When we express by F, the terms of eq. (63) which depend on z, eq. (67) 
is rewritten to the form 

F = Fw + F, (69) 

where 
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The spinning tension, on the other hand, is expressed by eq. (71), which 
is derived from the rheological eq. (43) : 

F = A(P)(dv,/dz) - 742 
By combining eq. (71) with eq. (54) and using the relat,ions (1) and (69), 

we obtain the equation for the change of cross-sectional area: 

The first term on the right-hand side of eq. (72) represents the thinning 
of cross-sectional area due to the solvent evaporation and the second term 
represents the thinning due to the elongational flow caused by the internal 
tension. 

On integrating eq. (72) from z = 0 to z = z, we obt8ain the equation of 
cross-sectional area of the form 

1 - US.N P In ~ = In ' (1 - (ws))(Fw 4- F ,  4- 742) dz 
(P> 

(73) 

S A (2) 

AN 1 - (US) WP 0 

where the constant FW is determined by eq. (74) which is derived from 
eq. (73) by replacing z by zw and solving for Fw: 

Thus FW is a constant which depends on the state of filament. It is seen 
that the cross-sectional area A ( z )  can be calculated from eqs. (l), (52), 
(73), and (74), when the properties of a polymer and solvent system, 
[p,?], the spinning conditions [WP, AN,  Aw, US,N]  and the values of (WS(Z) ) ,  

(P(z)), and F ~ ( z )  are given. 
The flat velocity of filament, v,, will be obtained, from eq. (28), when 

A(z) and (w&)) are calculated. The average flow in the r direction, 
v,(z,r), resulting from the thinning of a filament, will be calculated from 
eq. (75), which is obtained by integrating eq. (12) with respect to r on the 
assumptions (15) and (16) : 

1 dv, 
.r - 

2 dz 
v =  - -  (75) 

Equation of Temperature 

In  the steady state the macroscopic eq. (49) of energy is rewritten to the 
form: 
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Substituting eqs. (l), (52a) and (60) into eq. (76) we get the ordinary 
differential equation of the first order which gives the average temperature 
of filament, (T(z)):  

where the first term on the right-hand side of the equation reprpsents the 
rate of temperature increase due to the heat transfer from the air flow, 
while the second term represents the rate of temperature decrease due to 
the loss of enthalpy accompanied by the evaporation of solvent. 

When the polymer-solvent system [C,, Ms, Ls],  the spinning conditions 
[WP, T N ,  T,], and the values of h(z), (us(z)), A ( z ) ,  and T&) are given, 
eq. (76) can be solved to get the average temperature of filament, (T(z)). 

The temperature distribution within the filament is given by solving 
under the boundary conditions (79) and (80) the steady-state eq. (78) 
of energy which is derived from eq. (27) : in other words, if the properties 
of the polymer-solvent system [CP, A], a spinning condition [ T N ] ,  the sur- 
face temperature [To(z)], the velocity [v,(z)] are known, eq. (78) can be 
solved. 

with boundary conditions: 

z = O ,  O S r S R ,  T = T N  (79) 

z > 0, r = R(z), T = To(z) (80) 

In order to calculate T(z,r) and (T(z))  from eqs. (77) and (78), a similar 
method suggested concerning the diffusion eq. (63) will also be applied 
here. 

CORRELATIONS RELATED TO INTERPHASE TRANSPORT 

In order to calculate the equations of solvent content [eq. (62)], cross- 
sectional area [eq. (73) ] ,  spinning tension [eq. (69) ], and temperature 
[eq. (77) 1, mathematical expressions are required for the quantities related 
to interphase transport such as skin friction 71, heat-transfer coefficient h, 
and mass-transfer coefficient k,. 

Skin Friction 

Sakiadis calculated various characteristic boundary-layer parameters 
by assuming the logarithmic velocity profile for the laminar boundary- 
layer on the continuous cylinder of radius a moving with constant velocity 
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U through the stagnant fluid.13J4 According to his theory, the friction 
factor for total drag Cf is given by the form 

- 8 a  c - - . -  
?ra2 z f -  

where the dimensionless momentum area @/*a2 is calculated as a function 
of 5 which is defined by 

where Re is the Reynolds number based on U and is given by 

Re = 2aU/v* (83) 

in which V* denotes the kinematic fluid viscosity. The result is shown 
in Figure 6 as the relationship between Cf and Re for values of z/a of 
103, lo4, and 105. 

For the laminar boundary layer on the cylindrical surface of finite length, 
Glauert and Lighthill present, a recommended curve for 8/7ra2.15 This 
curve coincides with that for the moving continuous cylinder approxi- 
mately to within 30% in the calculated range of l. 

Kase and Matsuo measured the drag force exerted by air stream flowing 
parallel to a single wire whose value of z / a  is the order of The rela- 
tionship between Ct and Rep was given by the formula 

Cf = 1.24 Rep-'.sl (84) 
where 

Rep = 2aUp,,/v* (85) 

in which U P , ,  represents the velocity of air flowing parallel to the wire. 
This experimentally obtained value of Cf is about twice that theoretically 
calculated for z / a  = lo4. Although more elaborate experiments are neces- 
sary for precise discussion, we take for the present eq. (85) as representation 
of the average friction factor for the laminar boundary layers both on the 
moving continuous cylinder surface and on the cylindrical surface of finite 
length in the range of Reynolds number between 1 and lo2 and z/a be- 
tween lo3 and lo5 (see Fig. 6). 

The average skin friction 7f is related to Cf by the equation 

where p* denotes the fluid density. 
From eqs. (84), (85), and (86), ?f is expressed in terms of a and Up, ,  as: 

f f  = ~ ~ 3 5 3 p * v * ~ . s ~ a - 0 . s 1 ~  P,-  1.19 (87) 
Hence, when the air flows with velocity U P . ,  parallel to the moving 

cylinder of velocity U,  the average skin friction +f on the cylindrical sur- 
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face may be given by replacing Up,, in Eq. (82) by the relative velocity 
I U f Up,,]. Therefore, eq. (87) for the countercurrent flow will be given 
byeq. (88a) 

T~ = 0.353p*v*0.81a-0.81 (U +  UP,,)'.'^ (88a) 

(88b) 

and for the co-current flow by eq. (88b) 

Yf = &0.353p*v*0.81a-O.8' I u - UP,$'9 

where the positive sign is for U > Up,, and the negative sign is for U < 
UP,,. 

Heat-Transfer Coefficient h 

Sano et a1.l6 measured experimentally heat-transfer coefficients of a 
fine wire in air flow. Their experiments covered the following conditions: 
(1) heat transfer by forced convective flow parallel to both fixed and 
moving wires, (2) heat transfer of a fine wire traveling through stagnant 
air, and (3) free convection heat transfer from a vertical wire. On the 
basis of the experimental results they discussed the heat-transfer coeffi- 
cients of filament in spinning processes where these three sources of heat 
transfer are s~perposed.'~~'~ Their conclusion is that in usual dry spinning 
conditions the effect of forced convection is dominant and that entrained 
and free convective air flow are expected to increase the Nusselt number by 
20y0 at most. 

For the forced convection heat transfer they presented the following 
expressions. 

For parallel air flow 
Nu = 0.35 + 0.146Rep0." (89) 

for cross air flow 

Here, 
NU = 0.35 + 0 . 5 0 R e ~ ~ * ~  

Nu = 2ah/X* 

R w  = 2aUc,,/v* 

and A*  and Uc,,  denote the thermal conductivity of flowing air and the 
velocity of cross air flow, respectively. 

Kase and Matsuo also made experiments on forced convection heat 
transfer and obtained similar results.' In the Reynolds number ranging 
from 1 to lo2, they approximated eqs. (89) and (90) by eqs. (93) and (94) 
for parallel air flow and for cross air flow, respectively, 

Nu = 0.42Rep1/* (93) 

NU = 0 . 8 4 R ~ " ~  (94) 

We use these formulae for writing heat-transfer coefficients. Then the 
expressions for these coefficients are given for parallel air flow from eqs. 
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(85), (91) and (93) and for cross air flow from eqs. (91), (92), and (94) are 
given by eqs. (95) and (96) for parallel air flow and for cross air flow, 
respectively. 

h = 0.26 (A* Y *-I/') a-'" UP 
h = 0.52 (X* Y* -'la) a-"' UC ,m'" 

(95) 
(96) 

Mass-Transfer Coefficient k, 
As far as we know, experimental data for the mass-transfer coefficient 

of a fine cylinder seem to be lacking for the condition encountered in the 
dry spinning process in which the Reynolds number Re usually ranges from 
1 to 10 and the Schmidt number Sc from 0.5 to 2.0. However, it is known 
that the analogy between heat and mass transfer permits us to derive mass- 
transfer correlations from heat-transfer correlations for equivalent boundary 
conditions by simply replacing the Nusselt number Nu by the Sherwood 
number Sh and the Prandtl number Pr by the Schmidt number Sc.' It is 
reasonable, therefore, to  apply this analogy to the dry spinning process and 
to predict the mass-transfer coefficient from the above mentioned experi- 
mental results on heat transfer of a fine wire. 

Nu = Const. Re"Pr" (97) 
is used for heat transfer in certain regions of Re and Pr.19 

I n  eq. (97), Pr is given by 

P r  = Cp*p*/X* (98) 
where Cp* denotes the specific heat of flowing gas at constant pressure. 

The corresponding correlation for mass transfer is 

Sh = Const. Re"Sc" (99) 

Sh = 2ak,/C*D~s* (100) 

SC = p*/p*D~s* (101) 

where 

and 

where c* denotes molar density of flowing gas and DAS* denotes the mass 
diffusivity for the solvent vapor and air system. 

From eqs. (97) and (99) we have 

Sh/Nu = (Sc/Pr)" (102) 
I n  the range of Pr and Sc numbers between 0.5 and 2.5, a value of n = 0.5 

is suggested for both heat and mass transfer:19 

Sh/Nu = (Sc/Pr)'/' (103) 

k,  = (c*DAS*/X*) (Sc/Pr)% (104) 

From eqs. (91), (loo), and (103), the mass-transfer coefficient k,  is ex- 
pressed by 

Hence, on substituting eqs. (95) and (96) into eq. (104), we obtain the 
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expressions for the mass-transfer coefficient of a fine cylinder for parallel 
flow and cross flow, respectively. 

For parallel flow: 

k, = 0.26(c*Dss * v * -'Ia) (Sc/Pr) 1/aa-a/8Up ,ma/8 (105) 

k, = 0.52 (C*DAS *v * -'Ia) (Sc/Pr) UC (106) 

For cross flow : 

It will not be worthless to briefly examine here whether the analogy 
between momentum and heat transfer holds or not. The Chilton-Colburn 
j factor defined in eq (107a) for heat transfer can be calculated from eq. 
(107b), which is derived from eq. (93), when air flows parallel to a 
fine cylinder: 

(107a) 

(107b) 

In  Figure 6 a curve for 2 j ~  is shown with a dotted line, by putting Pr 
equal to 0.70. It is seen that the curve for 2 j ~  approximately coincides 
with that for cf. This indicates that the Chilton-Colburn analogy holds 
and suggests that the mechanisms of momentum and heat transfer may be 
the same. For more precise discussions, however, the accumulation of 
experimental data will be necessary. 

Correlations Applied to the Dry Spinning Process 

It is necessary to make the following assumption in order to apply the 
correlations for interphase transport concerning a fine cylinder having a 
constant radius a and running with constant velocity U to the condition 
where a radius changes (therefore, running velocity changes) along its 
length as is seen with filament in dry spinning. 

0.03 - 
- 

0.0 I 1 I 1 I I I I I I  
I 3 10 30 100 

Re 

Fig. 6. Momentum and heat-transfer correlations. 
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Assumption 19. The correlations related to  interphase transport of 
filament at z in dry spinning can be approximated by the correlations 
which would be given if the filament traveled from the spinneret to z 
with constant velocity v,(z) and a constant radius R(z) which the filament 
possesses a t  z. 

I n  other words, the correlations at z would be given by replacing a by 
R(z) and U by v&), where R(z) and v,(z) are the quantities which the fila- 
ment actually has at z. 

Thus, if we may assume that the skin friction is approximated by eq. 
(84) for any given value of z/a, the skin friction a t  z, 7&), will be expressed 
by 

T f ( 2 )  = ~ O . ~ ~ ~ ~ * Y * ~ . ~ ~ R ( Z ) ~ . " ~ U ~ ( Z )  f up,m1'"9 (108) 

where the sign convention is the same as in eq. (87). 
transfer coefficients at z will be as follows: 

Similarly the heat- 

For parallel flow: 

h (2) = 0.26 ( A*v *-'/')R (2) -'/'up ,m 

= 0.39 (A* Y *-'/')A (2) -'/' UP 

For cross flow : 

h ( z )  = 0.52(A*v * -l/')R (2) -'/* u c  , 

= 0.78 ( A*v *-'/')A (2) Uc .- '/' 
The mass-transfer coefficients a t  z will be as follows. 

For parallel flow : 

k, = 0.26 (C*DAS *Y* -'I*) (Sc/Pr) 'h (2 )  -"'UP, 
(111) 

= 0.39 (C*DAS *v * -'Ia) (Sc/Pr) '/'A ( z )  -'/'UP ,m'/a 

k, = 0.52(C*DAs*Y*-'~~)(Sc/Pr)'~'R(z)-'~~uc,,'~' 

For cross flow : 

(112) 
= O.78(c*DAs*~* -'Is) (Sc/Pr)'/'A (2) -2 / 'U~,m' /a  

From the above formulae i t  is seen that the skin friction r&), the heat- 
transfer coefficient h(z),  and the mass-transfer coefficient k,(z) are calcu- 
lated, when the physical constants for air flow [ p * ,  Y*, A*, c*, DAS*], the 
spinning conditions [Up,, or UC,,] and the state of the filament [ ~ ( z ) ,  
R(z), or A (2) ] are given. 

To sum up, when various physical constants for a given polymer and 
solvent system are measured as a function of temperature and concentra- 
tion, the procedure of calculating the steady state of filament for a given 
spinning condition is as follows. First, the concentration distribution of 
solvent WS(Z,T)  within the filament is obtained by solving the eqs. (52) 
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and (63) simultaneously. For this aim the knowledge on the quantities 
IC,(z), A (z) ,  v,(z), Dps(z,r), andf(ws&)) are required. Second, the spinning 
tension F(z )  and the cross-sectional area A(z)  are calculated from eqs. 
(69) and (73) if T&), (p(z)), (ws(z ) ) ,  and v,(z) are known. Finally, the 
temperature distribution T(z,r)  within the filament is obtained from eqs. 
(77) and (78) based on the knowledge of h(z),  A(z ) ,  v,(z), and (wg(z ) ) .  
Among the above quantities the filament velocity v,(z) is connected with 
A(z )  and (ws(z ) )  by eq. (52). Therefore, the quantities DPS(Z,T), (p(z)), 
andf(ws,&)) related to physical properties of the system and the quantities 
T&), h(z),  and k,(z) related to interphase transport are calculated when 
US(Z ,T ) ,  A(z) ,  and T(z,r)  are given. 

Since the quantities wS(z,r), A(z) ,  and T(z,r)  are mutually included in 
the equations of solvent content, spinning tension, cross-sectional area, 
and temperature, it is concluded that these equations should be solved 
simultaneously. The examples of calculation will be given in the subse- 
quent series of this study. 

CONCLUSION 
The fundamental equations for dry spinning were obtained by making 

clear the assumptions made. 
(1) The nonsteady-state equations were obtained by considering both 

microscopic and macroscopic balances of mass, momentum and energy 
on the assumption of axial symmetry. 

(2)  It was shown that the macroscopic equations can be simplified to 
a great extent by assuming a flat velocity profile. 

(3) The equations of average solvent content (ws(z)) ,  spinning tension 
F(z ) ,  cross-sectional area A (z) ,  and average temperature (T(z))  of filament 
were derived by modifying the macroscopic equations on condition of steady 
state. 

When the spinning conditions are given and the physical constants are 
measured for a given polymer and solvent system, it becomes possible to 
calculate the state of filament in dry spinning by solving simultaneously 
the microscopic and macroscopic equations. 

Since the spinning conditions [WP, W S , N ,  A N ,  Awl T N ,  T,, X S , ~ ,  UP,,,  
UC,,] are independently selectable, it is possible to calculate the behavior 
of filament for any given spinning condition composed of an arbitrary com- 
bination of these parameters without resorting to actual spinning. 

Among the physical constants of polymer solution important are such 
as the mass diffusivity, the activity of solvent and the Trouton viscosity. 
All these are functions of both composition and temperature. Since the 
filament composition vanes from dope composition to pure polymer and 
the filament temperature from wet-bulb temperature to air temperature, it 
is desired to make the measurements on the constants which cover these 
ranges of composition and temperature. The important constant con- 
cerning the movement of solvent vapor is the mass diffusivity in solvent 
vapor and air system. 
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It is noteworthy that if the concentration of solvent is made equal 
to zero, the equations for dry spinning entirely coincide with those for melt 
spinning which were previously derived. Furthermore, by applying the 
concept stated in this paper it may become possible to derive equations for 
wet spinning which includes more than two species of material and accom- 
panies chemical reactions. 
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